
Distinct-Values Estimation over Data Streams

Phillip B. Gibbons

Intel Research Pittsburgh, Pittsburgh PA 15213, USA
phillip.b.gibbons@intel.com

http://www.pittsburgh.intel-research.net/people/gibbons/

Abstract. In this chapter, we consider the problem of estimating the
number of distinct values in a data stream with repeated values. Distinct-
values estimation was one of the first data stream problems studied: In
the mid-1980’s, Flajolet and Martin gave an effective algorithm that
uses only logarithmic space. Recent work has built upon their tech-
nique, improving the accuracy guarantees on the estimation, proving
lower bounds, and considering other settings such as sliding windows,
distributed streams, and sensor networks.

1 Introduction

Estimating the number of distinct values in a data set is a well-studied prob-
lem with many applications [1–34]. The statistics literature refers to this as the
problem of estimating the number of species or classes in a population (see [4]
for a survey). The problem has been extensively studied in the database liter-
ature, for a variety of uses. For example, estimates of the number of distinct
values for an attribute in a database table are used in query optimizers to se-
lect good query plans. In addition, histograms within the query optimizer often
store the number of distinct values in each bucket, to improve their estimation
accuracy [30, 29]. Distinct-values estimates are also useful for network resource
monitoring, in order to estimate the number of distinct destination IP addresses,
source-destination pairs, requested urls, etc. In network security monitoring, de-
termining sources that send to many distinct destinations can help detect fast-
spreading worms [12, 32].

Distinct-values estimation can also be used as a general tool for duplicate-
insensitive counting: Each item to be counted views its unique id as its “value”,
so that the number of distinct values equals the number of items to be counted.
Duplicate-insensitive counting is useful in mobile computing to avoid double-
counting nodes that are in motion [31]. It can also be used to compute the
number of distinct neighborhoods at a given hop-count from a node [27] and
the size of the transitive closure of a graph [7]. In a sensor network, duplicate-
insensitive counting together with multi-path in-network aggregation enables
robust and energy-efficient answers to count queries [8, 24]. Moreover, duplicate-
insensitive counting is a building block for duplicate-insensitive computation of
other aggregates, such as sum and average.

II

stream S1: C, D, B, B, Z, B, B, R, T, S, X, R, D, U, E, B, R, T, Y, L, M, A, T, W

stream S2: T, B, B, R, W, B, B, T, T, E, T, R, R, T, E, M, W, T, R, M, M, W, B, W

Fig. 1. Two example data streams of N = 24 items from a universe {A, B, . . . , Z} of
size n = 26. S1 has 15 distinct values while S2 has 6.

More formally, consider a data set, S, of N items, where each item is from a
universe of n possible values. Because multiple items may have the same value,
S is a multi-set. The number of distinct values in S, called the zeroth frequency
moment F0, is the number of values from the universe that occur at least once
in S. In the context of this chapter, we will focus on the standard data stream
scenario where the items in S arrive as an ordered sequence, i.e., as a data
stream, and the goal is to estimate F0 using only one pass through the sequence
and limited working space memory. Fig. 1 depicts two example streams, S1 and
S2, with 15 and 6 distinct values, respectively.

The data structure maintained in the working space by the estimation al-
gorithm is called a synopsis. We seek an estimation algorithm that outputs an
estimate F̂0, a function of the synopsis, that is guaranteed to be close to the
true F0 for the stream. We focus on the following well-studied error metrics and
approximation scheme:

– relative error metric: the relative error of an estimate F̂0 is |F̂0 −F0|/F0.

– ratio error metric: the ratio error of an estimate F̂0 is max(F0/F̂0, F̂0/F0).

– standard error metric: the standard error of an estimator Y with standard
deviation σY (F0) is σY (F0)/F0.

– (ǫ, δ)-approximation scheme: an (ǫ, δ)-approximation scheme for F0 is a
randomized procedure that, given any positive ǫ < 1 and δ < 1, outputs an
estimate F̂0 that is within a relative error of ǫ with probability at least 1−δ.

Note that the standard error σ provides a means for an (ǫ, δ) trade-off: Under
distributional assumptions (e.g., Gaussian approximation), the estimate is within
ǫ = σ, 2σ, 3σ relative error with probability 1−δ = 65%, 95%, 99%, respectively.
In contrast, the (ǫ, δ)-approximation schemes in this chapter do not rely on any
distributional assumptions.

In this chapter, we survey the literature on distinct-values estimation. Sec-
tion 2 discusses previous approaches based on sampling or using large space
synopses. Section 3 presents the pioneering logarithmic space algorithm devel-
oped by Flajolet and Martin [13], as well as related extensions [1, 11]. We also
discuss practical issues in using these algorithms in practice. Section 4 presents
an algorithm that provides arbitrary precision ǫ [17], and a variant that im-
proves on the space bound [2]. Section 5 gives lower bounds on the space needed
to estimate F0 for a data stream. Finally, Section 6 considers distinct-values
estimation in a variety of important scenarios beyond the basic data stream
set-up, including scenarios with selection predicates, deletions, sliding windows,

III

Algorithm Comment/Features

Linear Counting [33] linear space, very low standard error
FM [13], PCSA [13] log space, good in practice, standard error
AMS [1] realistic hash functions, constant ratio error
LogLog [11], Super-LogLog [11] reduces PCSA synopsis space, standard error
Coordinated Sampling [17] (ǫ, δ)-approximation scheme
BJKST [2] improved space bound, (ǫ, δ)-approximation scheme

Table 1. Summary of the main algorithms presented in this chapter for distinct-values
estimation over a data stream of values

distributed streams, and sensor networks. Table 1 summarizes the main algo-
rithms presented in this chapter.

2 Preliminary Approaches and Difficulties

In this section, we consider several previously studied approaches to distinct-
values estimation and the difficulties with these approaches. We begin with pre-
vious algorithms based on random sampling.

2.1 Sampling-Based Algorithms

A common approach for distinct-values estimation from the statistics literature
(as well as much of the early work in the database literature until the mid-
1990s) is to collect a sample of the data and then apply sophisticated estimators
on the distribution of the values in the sample [4, 21, 22, 25, 26, 19, 5, 20]. This
extended research focus on sampling-based estimators is due in part to three
factors. First, in the applied statistics literature, the option of collecting data on
more than a small sample of the population is generally not considered because
of its prohibitive expense. For example, collecting data on every person in the
world or on every animal of a certain species is not feasible. Second, in the
database literature, where scanning an entire large data set is feasible, using
samples to collect (approximate) statistics has proven to be a fast and effective
approach for a variety of statistics [6]. Third, and most fundamental to the data
streams context, the failings of existing sampling-based algorithms to accurately
estimate F0 (all known sampling-based estimators provide unsatisfactory results
on some data sets of interest [5]) have spurred an ongoing focus on devising more
accurate algorithms.

F0 is a particularly difficult statistic to estimate from a sample. To gain
intuition as to why this is the case, consider the following 33% sample of a data
stream of 24 items:

B,B, T,R,E, T,M,W

Given this 33% sample (with its 6 distinct values), does the entire stream have
6 distinct values, 18 distinct values (i.e., the 33% sample has 33% of the dis-
tinct values), or something in between? Note that this particular sample can be

IV

for i := 0, . . . , s − 1 do M [i] := 0
foreach (stream item with value v) do

M [h(v)] := 1
let z := |{i : M [i] = 0}|
return s ln s

z

Fig. 2. The Linear Counting algorithm [33]

obtained by taking every third item of either S1 (where F0 = 15) or S2 (where
F0 = 6) from Fig. 1. Thus, despite sampling a large (33%) percentage of the
data, estimating F0 remains challenging, because the sample can be viewed as
fairly representative of either S1 or S2—two streams with very different F0’s. In
fact, in the worse case, all sampling-based F0 estimators are provably inaccurate:
Charikar et al. [5] proved that estimating F0 to within a small constant factor
(with probability > 1

2) requires (in the worst case) that nearly the entire data
set be sampled (see Section 5).

Thus, any approach based on a uniform sample of say 1% of the data (or
otherwise reading just 1% of the data) is unable to provide good guaranteed
error estimates in either the worst case or in practice. Highly-accurate answers
are possible only if (nearly) the entire data set is read. This motivates the need
for an effective streaming algorithm.

2.2 Streaming Approaches

Clearly, F0 can be computed exactly in one pass through the entire data set, by
keeping track of all the unique values observed in the stream. If the universe is
[1..n], a bit vector of size n can be used as the synopsis, initialized to 0, where
bit i is set to 1 upon observing an item with value i. However, in many cases the
universe is quite large (e.g., the universe of IP addresses is n = 232), making the
synopsis much larger than the stream size N ! Alternatively, we can maintain a
set of all the unique values seen, which takes F0 log2 n bits because each value
is log2 n bits. However, F0 can be as large as N , so again the synopsis is quite
large. A common approach for reducing the synopsis by (roughly) a factor of
log2 n is to use a hash function h() mapping values into a Θ(n) size range, and
then adapting the aforementioned bit vector approach. Namely, bit h(i) is set
upon observing an item with value i. Whang et al. [33], for example, proposed
an algorithm, called linear counting, depicted in Fig. 2. The hash function h()
in the figure maps each value v uniformly at random to a number in [0, s − 1].
They show that using a load factor F0/s = 12 provides estimates to within a
1% standard error. There are two limitations of this algorithm. First, we need
to have a good a priori knowledge of F0 in order to set the hash table size s.
Second, the space is proportionate to F0, which can be as large as n. Note that
the approximation error arises from collisions in the hash table, i.e., distinct
values in the stream mapping to the same bit position. To help alleviate this

V

for i := 0, . . . , L − 1 do M [i] := 0
foreach (stream item with value v) do {

b := the largest i ≥ 0 such that the i rightmost bits in h(v) are all 0
M [b] := 1

}
let Z := min{i : M [i] = 0} // i.e., the least significant 0-bit in M

return
⌊

2
Z

.77351

⌋

Fig. 3. The FM algorithm [13], using only a single hash function and bit vector

source of error, Bloom filters (with their multiple hash functions) have been used
effectively [23], although the space remains Θ(n) in the worst case.

The challenge in estimating F0 using o(n) space is that because there is
insufficient space to keep track of all the unique values seen, it is impossible
to determine whether or not an arriving stream value increases the number of
distinct values seen thus far.

3 Flajolet and Martin’s Algorithm

In this section, we present Flajolet and Martin’s (FM) pioneering algorithm
for distinct-values estimation. We also describe a related algorithm by Alon,
Matias, and Szegedy. Finally, we discuss practical issues and optimizations for
these algorithms.

3.1 The Basic FM Algorithm

Over two decades ago, Flajolet and Martin [13] presented the first small space
distinct-values estimation algorithm. Their algorithm, which we will refer to as
the FM algorithm, is depicted in Fig. 3. In this algorithm, the L = Θ(log(min(N,n)))
space synopsis consists of a bit vector M initialized to all 0, where N is the num-
ber of items and n is the size of the universe. The main idea of the algorithm is
to let each item in the data set select at random a bit in M and set it to 1, with
(quasi-)geometric distribution; i.e., M [i] is selected with probability (≈) 2−(i+1).
This selection is done using a hash function h that maps each value v uniformly
at random to an integer in [0, 2L − 1], and then determining the largest b such
that the b rightmost bits in h(v) are all 0. In this way, each distinct value gets
mapped to b = i with probability 2−(i+1). For the vector length L, it suffices to
take any number > log2(F0) + 4 [13]. As F0 is unknown, we can conservatively
use L = log2(min(N,n)) + 5.

The intuition behind the FM algorithm is as follows. Using a hash function
ensures that all items with the same value will make the same selection; thus the
final bit vector M is independent of any duplications among the item values. For
each distinct value, the bit b is selected with probability 2−(b+1). Accordingly, we

VI

Item Hash Function 1 Hash Function 2 Hash Function 3
value v b M [·] b M [·] b M [·]

15 1 00000010 1 00000010 0 00000001
36 0 00000011 1 00000010 0 00000001
4 0 00000011 0 00000011 0 00000001
29 0 00000011 2 00000111 1 00000011
9 3 00001011 0 00000111 0 00000011
36 0 00001011 1 00000111 0 00000011
14 1 00001011 0 00000111 1 00000011
4 0 00001011 0 00000111 0 00000011

Z = 2 Z = 3 Z = 2

Estimate F̂0 =
⌊

2
(2+3+2)/3

.77351

⌋

= 6

Fig. 4. Example run of the FM algorithm on a stream of 8 items, using three hash
functions. Each M [·] is depicted as an L = 8 bit binary number, with M [0] being the
rightmost bit shown. The estimate, 6, matches the number of distinct values in the
stream.

expect M [b] to be set if there are at least 2b+1 distinct values. Because bit Z − 1
is set but not bit Z, there are likely greater than 2Z but fewer than 2Z+1 distinct
values. Flajolet and Martin’s analysis shows that E[Z] ≈ log2(.77351 · F0), so
that 2Z/.77351 is a good choice in that range.

To reduce the variance in the estimator, Flajolet and Martin take the aver-
age over tens of applications of this procedure (with different hash functions).
Specifically, they take the average, Z̄, of the Z’s for different hash functions and

then compute
⌊

2Z̄/.77351
⌋

. An example is given in Fig. 4.

The error guarantee, space bound, and time bound are summarized in the
following theorem.

Theorem 1. [13] The FM algorithm with k (idealized) hash functions produces
an estimator with standard error O(1/

√
k), using k · L memory bits for the bit

vectors, for any L > log2(min(N,n))+4. For each item, the algorithm performs
O(k) operations on L-bit memory words.

The space bound does not include the space for representing the hash functions.
The time bound assumes that computing h and b are constant time operations.
Sections 3.3 and 3.4 will present optimizations that significantly reduce both the
space for the bit vectors and the time per item, without increasing the standard
error.

3.2 The AMS Algorithm

Flajolet and Martin [13] analyze the error guarantees of their algorithm assuming
the use of an explicit family of hash functions with ideal random properties
(namely, that h maps each value v uniformly at random to an integer in the

VII

Consider a universe U = {1, 2, . . . , n}. Let d be the smallest integer so that 2d > n

Consider the members of U as elements of the finite field F = GF (2d),
which are represented by binary vectors of length d

Let a and b be two random members of F , chosen uniformly and independently
Define h(v) := a · v + b, where the product and addition are computed in the field F
R := 0
foreach (stream item with value v) do {

b := the largest i ≥ 0 such that the i rightmost bits in h(v) are all 0
R := max(R, b)

}
return 2R

Fig. 5. The AMS algorithm [1], using only a single hash function

given range). Alon, Matias, and Szegedy [1] adapted the FM algorithm to use
(more realistic) linear hash functions. Their algorithm, which we will call the
AMS algorithm, produces an estimate with provable guarantees on the ratio
error. We discuss the AMS algorithm in this section.

First, note that in general, the final bit vector M returned by the FM algo-
rithm in Section 3.1 consists of three parts, where the first part is all 0’s, the
third part is all 1’s, and the second part (called the fringe in [13]) is a mix of 0’s
and 1’s that starts with the most significant 1 and ends with the least significant
0. Let R (Z) be the position of the most (least) significant bit that is set to 1 (0,
respectively). For example, for M [·] = 000101111, R = 5 and Z = 4. Whereas
the FM algorithm uses Z in its estimate, the AMS algorithm uses R. Namely,
the estimate is 2R. Fig. 5 presents the AMS algorithm. Note that unlike the
FM algorithm, the AMS algorithm does not maintain a bit vector but instead
directly keeps track of the most significant bit position set to 1.

The space bound and error guarantees for the AMS algorithm are summa-
rized in the following theorem.

Theorem 2. [1] For every r > 2, the ratio error of the estimate returned by
the AMS algorithm is at most r with probability at least 1 − 2/r. The algorithm
uses Θ(log n) memory bits.

Proof. Let b(v) be the value of b computed for h(v). By the construction of h(),
we have that for every fixed v, h(v) is uniformly distributed over F . Thus the
probability that b(v) ≥ i is precisely 1/2i. Moreover, for every fixed distinct v1

and v2, the probability that b(v1) ≥ i and b(v2) ≥ i is precisely 1/22i.
Fix an i. For each element v ∈ U that appears at least once in the stream,

let Wv,i be the indicator random variable whose value is 1 if and only if b(v) ≥ i.
Let Zi =

∑

Wv,i, where v ranges over all the F0 elements v that appear in
the stream. By linearity of expectation and because the expectation of each
Wv,i is 1/2i, the expectation E[Zi] of Zi is F0/2i. By pairwise independence,
the variance of Zi is F0

1
2i (1 − 1

2i) < F0/2i. Therefore, by Markov’s Inequality,

VIII

if 2i > rF0 then Pr[Zi > 0] < 1/r, since E[Zi] = F0/2i < 1/r. Similarly, by
Chebyshev’s Inequality, if r2i < F0 then Pr[Zi = 0] < 1/r, since Var[Zi] <
F0/2i = E[Zi] and hence Pr[Zi = 0] ≤ Var[Zi]/(E[Zi]

2) < 1/E[Zi] = 2i/F0.
Because the algorithm outputs F̂0 = 2R, where R is the maximum i for which
Zi > 0, the two inequalities above show that the probability that the ratio
between F̂0 and F0 is not between 1/r and r is smaller than 2/r, as needed.

As for the space bound, note that the algorithm uses d = O(log n) bits
representing an irreducible polynomial needed in order to perform operations
in F , O(log n) bits representing a and b, and O(log log n) bits representing the
current maximum R value.

The probability of a given ratio error can be reduced by using multiple hash
functions, at the cost of a linear increase in space and time.

Corollary 1. With k hash functions, the AMS algorithm uses O(k log n) mem-
ory bits and, for each item, performs O(k) operations on O(log n)-bit memory
words.

The space bound includes the space for representing the hash functions. The time
bound assumes that computing h(v) and b(v) are constant time operations.

3.3 Practical Issues

Although the AMS algorithm has stronger error guarantees than the FM al-
gorithm, the FM algorithm is somewhat more accurate in practice, for a given
synopsis size [13]. In this section we argue why this is the case, and discuss other
important practical issues.

First, the most significant 1-bit (as is used in the AMS algorithm) can be
set by a single outlier hashed value. For example, suppose a hashed value sets
the i’th bit whereas all other hashed values set bits ≤ i − 3, so that M [·] is of
the form 0001001111. In such cases, it is clear from M that 2i is a significant
overestimate of F0: it is not supported by the other bits (in particular, both bits
i − 1 and i − 2 are 0’s not 1’s). On the other hand, the least significant 0-bit
(as is used in the FM algorithm) is supported by all the bits to its right, which
must be all 1’s. Thus FM is more robust against single outliers.

Second, although the AMS algorithm requires only ≈ log log n bits to repre-
sent the current R, while the FM algorithm needs ≈ log n bits to represent the
current M [·], this space savings is insignificant compared to the O(log n) bits the
AMS algorithm uses for the hash function computations. In practice, the same
class of hash functions (i.e., h(v) = a · v + b) can be used in the FM algorithm,
so that it too uses O(log n) bits per hash function.

Note that there are common scenarios where the space for the hash functions
is not as important as the space for the accumulated synopsis (i.e., R or M [·]).
For example, in the distributed streams scenario (discussed in Section 6), an
accumulated synopsis is computed for each stream locally. In order to estimate
the total number of distinct values across all streams, the current accumulated
synopses are collected. Thus the message size depends only on the accumulated
synopsis size. Similarly, when distinct-values estimation techniques are used for

IX

Mj [·]’s: 00001111, 00001011, 00000111, 00010111, 00011111, 00001111
Interleaved: 000000000000000000000110110011101111111111111111

End-encoded: 11011001110, 16

Fig. 6. Example FM synopsis compression, for k = 6 and L = 8

duplicate-insensitive aggregation in sensor networks (see Section 6), the energy
used in sending messages depends on the accumulated synopsis size and not
the hash function size. In such scenarios, the (log log n)-bit AMS synopses are
preferable to the (log n)-bit FM synopses.

Note, however, that the size of the FM accumulated synopsis can be sig-
nificantly reduced, using the following simple compression technique [13, 27, 8].
Recall that at any point during the processing of a stream, M [·] consists of three
parts, where the first part is all 0’s, the second part (the fringe) is a mix of 0’s
and 1’s, and the third part is all 1’s. Recall as well that multiple M [·] are con-
structed for a given stream, each using a distinct hash function. These M [·] are
likely to share many bits in common, because each M [·] is constructed using the
same algorithm on the same data. Suppose we are using k hash functions, and
for j = 1, . . . , k, let Mj [·] be the bit vector created using the jth hash function.
The naive approach of concatenating M1[·], M2[·], . . . , Mk[·] uses k ·L bits (recall
that each Mj [·] is L bits), which is ≈ k log2 n bits. Instead, we will interleave the
bits, as follows:

M1[L−1],M2[L−1], . . . ,Mk[L−1],M1[L−2], . . . ,Mk[L−2], . . . ,M1[0], . . . ,Mk[0],

and then run-length encode the resulting bit vector’s prefix and suffix. From the
above arguments, the prefix of the interleaved bit vector is all 0’s and the suffix is
all 1’s. We use a simple encoding that ignores the all 0’s prefix, consisting of (1)
the interleaved bits between the all 0’s prefix and the all 1’s suffix and (2) a count
of the length of the all 1’s suffix. An example is given in Fig. 6. Note that the
interleaved fringe starts with the maximum bit set among the k fringes and ends
with their minimum unset bit. Each fringe is likely to be tightly centered around
the current log2 F0, e.g., for a given hash function and c > 0, the probability that
no bit larger than log2 F0 +c is set is (1−2−(log2 F0+c))F0 ≈ e−1/2c

. At any point
in the processing of the stream, a similar argument shows that the interleaved
fringe is expected to be fewer than O(k log k) bits. Thus our simple encoding is
expected to use fewer than log2 log2 n+O(k log k) bits. In comparison, the AMS
algorithm uses k log2 log2 n bits for its accumulated synopsis, although this too
can be reduced through compression techniques.

The number of bit vectors, k, in the FM algorithm is a tunable parameter
trading off space for accuracy. The relative error as a function of k has been
studied empirically in [13, 27, 8, 24] and elsewhere, with < 15% relative error
reported for k = 20 and < 10% relative error reported for k = 64, on a variety

X

for j := 1, . . . , k and i := 0, . . . , L − 1 do Mj [i] := 0
foreach (stream item with value v) do {

x := h(v) mod k // Note: k is a power of 2
b := the largest i ≥ 0 such that the i rightmost bits in ⌊h(v)/k⌋ are all 0
Mx[b] := 1

}

Z̄ := 1

k

∑k

j=1
min{i : Mj [i] = 0}

return
⌊

k
.77351

2Z̄
⌋

Fig. 7. The PCSA algorithm [13]

of data sets. These studies show a strong diminishing return for increases in
k. Theorem 1 shows that the standard error is O(1/

√
k). Thus reducing the

standard error from 10% to 1% requires increasing k by a factor of 100! In
general, to obtain a standard error at most ǫ we need k = Θ(1/ǫ2). Estan,
Varghese and Fisk [12] present a number of techniques for further improving the
constants in the space vs. error trade-off, including using multi-resolution and
adaptive bit vectors.

Both the FM and AMS algorithms use the largest i such that the i rightmost
bits in h(v) are all 0, in order to create an exponential distribution onto an integer
range. A related, alternative approach by Cohen [7] is to (1) use a hash function
that maps uniformly to the interval [0, 1], (2) maintain the minimum hashed
value x seen thus far in the stream S (i.e., x = minv∈S{h(v)}), and then (3)
return 1

x − 1 as the estimate for F0. The intuition is that if there are F0 distinct
values mapped uniformly at random to [0, 1], then we may expect them to divide
the interval into F0 + 1 relatively evenly-spaced subintervals, i.e., subintervals
of size 1

F0+1 . As [0, x] is the first such subinterval, x = 1
F0+1 , and hence 1

x − 1
is used as the estimate for F0. As with the FM and AMS algorithms, the error
guarantee can be improved by taking multiple hash functions and averaging.
Empirically, this approach is not as accurate as the FM algorithm for a given
synopsis size [27].

3.4 Improving the Per-Item Processing Time

The FM algorithm as presented in Section 3.1 performs O(k) operations on
memory words of ≈ log2 n bits (recall Theorem 1) for each stream item. This
is because a different hash function is used for each of the k bit vectors. To
reduce the processing time per item from O(k) to O(1), Flajolet and Martin
present the following variant on their algorithm, called Probabilistic Counting
with Stochastic Averaging (PCSA).

In the PCSA algorithm (see Fig. 7), k bit vectors are used (for k a power
of 2) but only a single hash function h(). For each stream item with value v,
the log2 k least significant bits of h(v) are used to select a bit vector. Then the
remaining L − log2 k bits of h(v) are used to select a position within that bit

XI

for j := 1, . . . , k do Rj := 0
foreach (stream item with value v) do {

x := h(v) mod k // Note: k is a power of 2
b := the largest i ≥ 0 such that the i rightmost bits in ⌊h(v)/k⌋ are all 0
Rx := max(Rx, b)

}

Z̄ := 1

k

∑k

j=1
Rj

return ⌊(0.79402k − 0.84249)2Z̄⌋

Fig. 8. The LogLog algorithm [11]

vector, according to an exponential distribution (as in the basic FM algorithm).
To compute an estimate, PCSA averages over the positions of the least significant
0-bits, computes 2 to the power of that average, and divides by the bias factor
.77351. To compensate for the fact that each bit vector has seen only 1/k’th of
the distinct items on average, the estimate is multiplied by k.

The error guarantee, space bound, and time bound are summarized in the
following theorem.

Theorem 3. [13] The PCSA algorithm with k bit vectors and an (idealized)
hash function produces an estimator with standard error 0.78/

√
k, using k · L

memory bits for the bit vectors, for any L > log2(min(N,n)/k) + 4. For each
item, the algorithm performs O(1) operations on (log2 n)-bit memory words.

The space bound does not include the space for representing the hash function.
The time bound assumes that computing h and b are constant time operations.
Although some of the operations use only L-bit words, the word size is dominated
by the log2 n bits for the item value v.

Durand and Flajolet [11] recently presented a variant of PCSA, called the
LogLog algorithm, that reduces the size of the accumulating synopsis from log n
to log log n. (As in FM and PCSA, the size of the hash function is not accounted
for in the space bound.) The algorithm, depicted in Fig. 8, differs from PCSA
by maintaining the maximum bit set (as in AMS) and using a different func-
tion for computing the estimate. The analysis in [11] gives the bias correction
factor (0.79402k − 0.84249), where k is the number of maximums (i.e., Rj ’s)

maintained. With k maximums, the standard error is shown to be 1.30/
√

k (as-
suming idealized hash functions). This is higher than with the PCSA algorithm
(supporting our earlier argument that the least-significant 0-bit is more accurate
than the most-significant 1-bit), but the synopsis size is smaller (when ignoring
the hash function space and not using the compression tricks in Section 3.3).

Durand and Flajolet [11] also present a further improvement, called Super-
LogLog, that differs from LogLog in two aspects. First, it discards the largest 30%
of the estimates, in order to decrease the variance. As discussed in Section 3.3,
using the maximum bit set is subject to overestimation caused by outlier bits

XII

being set. By discarding the largest estimates, these outliers are discarded. Note
that a different correction factor is needed in order to compensate for this ad-
ditional source of bias [11]. Second, it represents each maximum Rj using only
L = log2(log2(n/k) + 3) bits, and again corrects for the additional bias. The
error guarantee, space bound, and time bound are summarized in the following
theorem.

Theorem 4. [11] The Super-LogLog algorithm with k maximums and an (ide-
alized) hash function produces an estimator with standard error 1.05/

√
k, using

k ·L memory bits for the maximums, where L = ⌈log2⌈log2(min(N,n)/k) + 3⌉⌉.
For each item, the algorithm performs O(1) operations on (log2 n)-bit memory
words.

The space bound does not include the space for representing the hash function.
The time bound assumes that computing h and b are constant time operations.
Although some of the operations use only L-bit words, the word size is dominated
by the log2 n bits for the stream value v. The standard error 1.05/

√
k for Super-

LogLog is higher than the 0.78/
√

k error for PCSA. Comparing the synopsis
sizes (ignoring the hash functions), super-LogLog uses a fixed ≈ k log2 log2(n/k)
bits, whereas PCSA using the compression tricks of Section 3.3 uses an expected
≈ log2 log2 n + O(k log k) bits.

4 (ǫ, δ)-Approximation Schemes

None of the algorithms presented thus far provides the strong guarantees of an
(ǫ, δ)-approximation scheme. In this section, we present two such algorithms:
the Coordinated Sampling algorithm of Gibbons and Tirthapura [17], and an
improvement by Bar-Yossef et al. [2] that achieves near optimal space.

4.1 Coordinated Sampling

Gibbons and Tirthapura [17] gave the first (ǫ, δ)-approximation scheme for F0.
Their algorithm, called Coordinated Sampling, is depicted in Fig. 9.

In the algorithm, there are k = Θ(log(1/δ)) instances of the same procedure,
differing only in their use of different hash functions hj(). For each instance, the
hash function is used to assign each potential stream value to a “level”, such that
half the values are assigned to level 0, a quarter to level 1, etc. The algorithm
maintains a set of the ≈ τ distinct stream values that have the highest levels
among those observed thus far. More specifically, it keeps track of the minimum
level ℓj such that there are at most τ distinct stream values with level at least
ℓj , as well as the set, Sj , of these stream values.

As in the AMS algorithm (Section 3.2), any uniform pairwise independent
hash function can be used for hj(); for example, linear hash functions can be
used. Let bj(v) be the value of b computed in the algorithm for hj(v). Following
the argument in Section 3.2, we have that Pr{bj(v) = ℓ} = 1

2ℓ+1 and Pr{bj(v) ≥
ℓ} = 1

2ℓ for ℓ = 0, . . . , log n− 1. Hence, Sj is always a uniform random sample of

XIII

for j := 1, . . . , k do { ℓj := 0, Sj := ∅ }
foreach (stream item with value v) do {

for j := 1, . . . , k do {
b := the largest i ≥ 0 such that the i rightmost bits in hj(v) are all 0
if b ≥ ℓj and (v, b) 6∈ Sj do {

Sj := Sj ∪ {(v, b)}
// if Sj is too large, discard the level ℓj sample points from Sj

while |Sj | > τ do {
Sj := Sj − {(v′, b′) : b′ = ℓj}
ℓj := ℓj + 1

}
}

}
}
return medianj=1,...,k(|Sj | · 2

ℓj)

Fig. 9. The Coordinated Sampling algorithm [17]. The values of k and τ depend on the
desired ǫ and δ: k = 36 log

2
(1/δ) and τ = 36/ǫ2, where the constant 36 is determined

by the worst case analysis and can be much smaller in practice.

the distinct stream values observed thus far, where each value is in the sample
with probability 2−ℓj . Thus, Coordinated Sampling uses |Sj | ·2ℓj as the estimate
for the number of distinct values in the stream. To ensure that the estimate is
within ǫ with probability 1 − δ, it computes the median over Θ(log(1/δ)) such
estimates.

Each step of the algorithm within the “for” loop can be done in constant
(expected) time by maintaining the appropriate data structures, assuming (as we
have for the previous algorithms) that computing hash functions and determining
b are constant time operations. For example, each Sj can be stored in a hash
table Tj of 2τ entries, where the pair (v, b) is the hash key. This enables both
tests for whether a given (v, b) is in Sj and insertions of a new (v, b) into Sj

to be done in constant expected time. We can enable constant time tracking
of the size of Sj by maintaining an array of log n + 1 “level” counters, one per
possible level, which keep track of the number of pairs in Sj for each level. We
also maintain a running count of the size of Sj . This counter is incremented by 1
upon insertion into Sj and decremented by the corresponding level counter upon
deleting all pairs in a level. In the latter case, in order to quickly delete from
Sj all such pairs, we leave these deleted pairs in place, removing them lazily as
they are encountered in subsequent visits to Tj . (We need not explicitly mark
them as deleted because subsequent visits see that their level numbers are too
small and treat them as deleted.)

The error guarantee, space bound, and time bound are summarized in the
following theorem. The space bound includes the space for representing the hash

XIV

functions. The time bound assumes that computing hash functions and b are
constant expected time operations.

Theorem 5. [17] The Coordinated Sampling algorithm provides an (ǫ, δ)-approx-

imation scheme, using O(log n log(1/δ)
ǫ2) memory bits. For each item, the algorithm

performs an expected O(log(1/δ)) operations on (log2 n)-bit memory words.

Proof. We have argued above about the time bound. The space bound is O(k ·τ)

memory words, i.e., O(log n log(1/δ)
ǫ2) memory bits.

In what follows, we sketch the proof that Coordinated Sampling is indeed
an (ǫ, δ)-approximation scheme. A difficulty in the proof is that the algorithm
decides when to stop changing levels based on the outcome of random trials, and
hence may stop at an incorrect level, and make correspondingly bad estimates.
We will argue that the probability of stopping at a “bad” level is small, and can
be accounted for in the desired error bound.

Accordingly, consider the jth instance of the algorithm. For ℓ ∈ {0.. log n}
and v ∈ {1..n}, we define the random variables Xℓ,v such that Xℓ,v = 1 if v’s level
is at least ℓ and 0 otherwise. For the stream S, we define Xℓ =

∑

v∈S Xℓ,v for
every level ℓ. Note that after processing S, the value of ℓj is the lowest numbered
level f such that Xf ≤ τ . The algorithm uses the estimate 2f · Xf .

For every level ℓ ∈ {0 . . . log n}, we define Bℓ such that Bℓ = 1 if 2ℓXℓ 6∈
[(1 − ǫ)F0, (1 + ǫ)F0] and 0 otherwise. Level ℓ is “bad” if Bl = 1, and “good”
otherwise. Let Eℓ denote the event that the final value of ℓj is ℓ i.e., that f
equals ℓ. The heart of the proof is to show the following:

Pr{Given instance produces an estimate not in [(1 − ǫ)F0, (1 + ǫ)F0]} <
1

3
(1)

Let P be the probability in equation 1. Let ℓ∗ denote the first level such that
E[Xℓ∗] ≤ 2

3τ . The instance produces an estimate not within the target range if
Bf is true for the level f such that Ef is true. Thus,

P =

log n
∑

i=0

Pr{Ei ∧ Bi} <

ℓ∗
∑

i=0

Pr{Bi} +

log n
∑

i=ℓ∗+1

Pr{Ei} (2)

The idea behind using the inequality to separate the Bi terms from the Ei

terms is that the lower levels (until ℓ∗) are likely to have good estimates and the
algorithm is unlikely to keep going beyond level ℓ∗.

As in the proof for the AMS algorithm (Theorem 2), we have that for ℓ =
0, . . . , log n − 1,

E[Xℓ] =
F0

2ℓ
, (3)

and

var[Xℓ] <
F0

2ℓ
(4)

XV

We will now show that

ℓ∗
∑

i=0

Pr{Bi} <
6

ǫ2τ
(5)

To see this, we first express Pr{Bi} in terms of equation 3: Pr{Bi} = Pr{|Xi −
F0

2i | ≥ ǫF0

2i . Then, from equation 4 and using Chebyshev’s inequality, we have

Pr{Bi} < 2i

F0ǫ2 . Hence,
∑ℓ∗

i=0 Pr{Bi} <
∑ℓ∗

i=0
2i

F0ǫ2 = 2ℓ∗+1

F0·ǫ2
Now, because ℓ∗

is the first level such that F0

2ℓ∗ ≤ 2
3τ , we have that F0 > 2ℓ∗−1 · 2

3τ . Thus,
∑ℓ∗

i=0 Pr{Bi} < 2ℓ∗+1

F0·ǫ2
< 6

ǫ2τ , establishing equation 5.
Next, we will show that

log n
∑

i=ℓ∗+1

Pr{Ei} <
6

τ
(6)

To see this, we first observe that
∑log n

i=ℓ∗+1 Pr{Ei} = Pr{Xℓ∗ > τ}, because the

Ei’s are mutually exclusive. Because E[Xℓ∗] < 2
3τ , we have Pr{Xℓ∗ > τ} <

Pr{Xℓ∗ − E[Xℓ∗] > τ
3}. By Chebyshev’s inequality and equation 4, this latter

probability is less than 9
τ2 · F0

2ℓ∗ . Plugging in the fact that 2
3τ > E[Xℓ∗] = F0

2ℓ∗ ,

we obtain
∑log n

i=ℓ∗+1 Pr{Ei} < 9
τ2 · 2τ

3 , establishing equation 6.
Plugging into equation 2 the results from equations 5 and 6, and setting

τ = 36/ǫ2, we have P < 1
6 + ǫ2

6 < 1
3 . Thus, equation 1 is established.

Finally, the median fails to be an (ǫ, δ) estimator of F0 if at least k/2 instances
of the algorithm fail. By equation 1, we expect < k/3 to fail, and hence by
Chernoff bounds, the probability the algorithm fails is less than exp(−k/36).
Setting k = 36 log(1/δ) makes this probability less than δ, completing the proof
of the theorem.

4.2 Improving the Space Bound

Bar-Yossef et al. [2] showed how to adapt the Coordinated Sampling algorithm in
order to improve the space bound. Specifically, their algorithm, which we call the
BJKST algorithm, stores the elements in Sj using less space, as follows. Instead of
storing the pair (v, b), as in Coordinated Sampling, the BJKST algorithm stores
g(v), for a suitably chosen hash function g(). Namely, g() is a (randomly chosen)
uniform pairwise independent hash function that maps values from [0..n− 1] to
the range [0..R−1], where R = 3((log n+1)τ)2. Thus only O(log log n+log(1/ǫ))
bits are needed to store g(v). The level b for v is represented implicitly by storing
the hashed values as a collection of balanced binary search trees, one tree for
each level.

The key observation is that for any given instance of the algorithm, g() is
applied to at most (log n + 1) · τ distinct values. Thus, the choice of R ensures
that with probability at least 5/6, g() is injective on these values. If g() is indeed
injective, then using g() did not alter the basic progression of the instance. The

XVI

alternative occurs with probability at most 1/6. To compensate, the BJKST
algorithm uses a larger τ , namely, τ = 576/ǫ2, such that the probability of a bad
estimate can be bounded by 1/6. Because 1

6 + 1
6 = 1

3 , a result akin to equation 1
can be established. Finally, taking the median over k = 36 log(1/δ) instances
results in an (ǫ, δ)-approximation.

The error guarantee, space bound, and time bound are summarized in the
following theorem. The space bound includes the space for representing the hash
functions. The time bound assumes that computing hash functions and b are
constant expected time operations.

Theorem 6. [2] The BJKST algorithm provides an (ǫ, δ)-approximation scheme,
using O((1

ǫ2 (log(1/ǫ) + log log n) + log n) log(1/δ)) memory bits. For each item,
the algorithm performs O(log(1/δ)) operations on (log2 n)-bit words plus at most

O(log(1/δ)
ǫ2) operations on (log2(1/ǫ) + log2 log2 n)-bit words.

5 Lower Bounds

This section presents five key lower bound results for distinct-values estimation.
The first lower bound shows that observing (nearly) the entire stream is

essential for obtaining good estimation error guarantees for all input streams.

Theorem 7. [5] Consider any (possibly adaptive and randomized) estimator for
the number of distinct values F0 that examines at most r items in a stream of
N items. Then, for any γ > e−r, there exists a worst case input stream such
that with probability at least γ, the ratio error of the estimate F̂0 output by the

estimator is at least
√

N−r
2r ln 1

γ .

Thus when r = o(N), the ratio error is non-constant with high probability. Even
when 1% of the input is examined, the ratio error is at least 5 with probability
> 1/2.

The second lower bound shows that randomization is essential for obtaining
low estimation error guarantees for all input streams, if we hope to use sublin-
ear space. For this lower bound, we also provide the proof, as a representative
example of how such lower bounds are proved.

Theorem 8. [1] Any deterministic algorithm that outputs, given one pass through
a data stream of N = n/2 elements of U = {1, 2, . . . , n}, an estimate with at
most 10% relative error requires Ω(n) memory bits.

Proof. Let G be a family of t = 2Ω(n) subsets of U , each of cardinality n/4 so
that any two distinct members of G have at most n/8 elements in common. (The
existence of such a G follows from standard results in coding theory, and can
be proved by a simple counting argument). Fix a deterministic algorithm that
approximates F0. For every two members G1 and G2 of G let A(G1, G2) be the
stream of length n/2 starting with the n/4 members of G1 (in a sorted order)
and ending with the set of n/4 members of G2 (in a sorted order). When the

XVII

algorithm runs, given a stream of the form A(G1, G2), the memory configuration
after it reads the first n/4 elements of the stream depends only on G1. By the
pigeonhole principle, if the memory has less than log2 t bits, then there are two
distinct sets G1 and G2 in G, so that the content of the memory after reading
the elements of G1 is equal to that content after reading the elements of G2. This
means that the algorithm must give the same final output to the two streams
A(G1, G1) and A(G2, G1). This, however, contradicts the assumption, because
F0 = n/4 for A(G1, G1) and F0 ≥ 3n/8 for A(G2, G1). Therefore, the answer of
the algorithm makes a relative error that exceeds 0.1 for at least one of these
two streams. It follows that the space used by the algorithm must be at least
log2 t = Ω(n), completing the proof.

The third lower bound shows that approximation is essential for obtaining
low estimation error guarantees for all input streams, if we hope to use sublinear
space.

Theorem 9. [1] Any randomized algorithm that outputs, given one pass through
a data stream of at most N = 2n items of U = {1, 2, . . . , n}, a number Y such
that Y = F0 with probability at least 1− δ, for some fixed δ < 1/2, requires Ω(n)
memory bits.

The fourth lower bound shows that Ω(log n) memory bits are required for
obtaining low estimation error.

Theorem 10. [1] Any randomized algorithm that outputs, given one pass through
a data stream of items from U = {1, 2, . . . , n}, an estimate with at most a 10%
relative error with probability at least 3/4 must use at least Ω(log n) memory
bits.

The final lower bound shows that Ω(1/ǫ2) memory bits are required in order
to obtain an (ǫ, δ)-approximation scheme (even for constant δ).

Theorem 11. [34] For any δ independent of n and any ǫ, any randomized
algorithm that outputs, given one pass through a data stream of items from U =
{1, 2, . . . , n}, an estimate with at most an ǫ relative error with probability at least
1 − δ must use at least Ω(min(n, 1/ǫ2)) memory bits.

Thus we have an Ω(1/ǫ2 +log n) lower bound for obtaining arbitrary relative
error for constant δ and, by the BJKST algorithm, a nearly matching upper
bound of O(1/ǫ2(log(1/ǫ) + log log n) + log n).

6 Extensions

In this section, we consider distinct-values estimation in a variety of important
scenarios beyond the basic data stream set-up. In Sections 6.1–6.5, we focus
on sampling, sliding windows, update streams, distributed streams, and sensor
networks (ODI), respectively, as summarized in Table 2. Finally, Section 6.6
highlights three additional settings studied in the literature.

XVIII

Algorithm Cite & Sampling Sliding Update Distributed ODI
Section Distinct Windows Streams Streams

FM [13]; 3.1 no no no yes yes
PCSA [13]; 3.4 no no no yes yes

FM with log2 space 6.2, 6.3 no yes yes yes no
AMS [1]; 3.2 no no no yes yes
Cohen [7]; 3.3 no no no yes yes
LogLog [11]; 3.4 no no no yes yes

Coordinated Sampling [17]; 4.1 yes no no yes yes
BJKST [2]; 4.2 no no no yes yes

Distinct Sampling [16]; 6.1 yes no no yes yes
Randomized Wave [18]; 6.2 yes yes no yes yes

l0 Sketch [9]; 6.2 no no yes yes no
Ganguly [14]; 6.3 yes no yes yes no
CLKB [8]; 6.5 no no no yes yes

Table 2. Scenarios handled by the main algorithms discussed in this section

6.1 Sampling Distinct

In addition to providing an estimate of the number of distinct values in the
stream, several algorithms provide a uniform sample of the distinct values in the
stream. Such a sample can be used for a variety of sampling-based estimation
procedures, such as estimating the mean, the variance, and the quantiles over the
distinct values. Algorithms that retain only hashed values, such as FM, PCSA,
AMS, Cohen, LogLog, BJKST, l0 Sketch (Section 6.2) and CLKB (Section 6.5),
do not provide such samples. In some cases, such as Cohen, the algorithm can
be readily adapted to produce a uniform sample (with replacement): For each
instance (i.e., each hash function) of the algorithm, maintain not just the current
minimum hashed value but also the original value associated with this minimum
hashed value. As long as two different values do not hash to the same mini-
mum value for a given hash function, each parallel instance produces one sample
point. In contrast, Coordinated Sampling, Randomized Wave (Section 6.2) and
Ganguly’s algorithm (Section 6.3) all directly provide a uniform sample of the
distinct values.

Gibbons [16] extended the sampling goal to a multidimensional data setting
that arises in a class of common databases queries. Here, the goal is to extract
a uniform sample of the distinct values in a primary dimension, as before, but
instead of retaining only the randomly selected values V , the algorithm retains
a “same-value” sample for each value in V . Specifically, for each v ∈ V , the
algorithm maintains a uniform random sample chosen from all the stream items
with value v. A user-specified parameter t determines the size of each of these
same-value samples; if there are fewer than t stream items with a particular
value, the algorithm retains them all. The algorithm, called Distinct Sampling,
is similar to Coordinated Sampling (Fig. 9) in having log n levels, maintaining all
values whose levels are above a current threshhold, and incrementing the level

XIX

select count(distinct target-attr) select count(distinct o custkey)
from Table from orders
where P where o orderdate ≥ ’2006-01-01’

(a) (b)

Fig. 10. (a) Distinct Values Query template (b) Example query

threshhold whenever a space bound is reached. However, instead of retaining
one (v, b) pair for the value v, it starts by retaining each of the first t items
with value v in the primary dimension, as well as a count, nv, of the number
of items in the stream with value v (including the current item). Then, upon
observing any subsequent items with value v, it maintains a uniform same-value
sample for v by adding the new item to the sample with probability t/nv, making
room by discarding a random item among the t items currently in the sample
for v. Fig. 10 gives an example of the type of SQL query that can be well
estimated by the Distinct Sampling algorithm, where target-attr in Fig. 10(a) is
the primary dimension and the predicate P is typically on one or more of the
other dimensions, as in Fig. 10(b). The estimate is obtained by first applying
the predicate to the same-value samples, in order to estimate what fraction of
the values in V would be eliminated by the predicate, and then outputting the
overall query estimate based on the number of remaining values.

6.2 Sliding Windows

The sliding windows setting is motivated by the desire to estimate the number
of distinct values over only the most recent stream items. Specifically, we are
given a window size W , and the problem is to estimate the number of distinct
values over a sliding window of the W most recent items. The goal is to use
space that is logarithmic in W (linear in W would be trivial). Datar et al. [10]
observed that the FM algorithm can be extended to solve the sliding windows
problem, by keeping track of the stream position of the most recent item that
set each FM bit. Then, when estimating the number of distinct values within
the current sliding window, only those FM bits whose associated positions are
within the window are considered to be set. This increases the space needed for
the FM algorithm by a logarithmic factor.

Gibbons and Tirthapura [18] developed an (ǫ, δ)-approximation scheme for
the sliding windows scenario. Their algorithm, called Randomized Wave, is de-
picted in Fig. 11. In the algorithm, there are k = Θ(log(1/δ)) instances of the
same procedure, differing only in their use of different hash functions hj(). Any
uniform, pairwise independent hash function can be used for hj(). Let bj(v) be
the value of b computed in the algorithm for hj(v).

Whereas Coordinated Sampling maintained a single uniform sample of the
distinct values, Randomized Wave maintains ≈ log W uniform samples of the

XX

// Note: All additions and comparisons in this algorithm are done modulo W ′

W ′ := the smallest power of 2 greater than or equal to 2W
pos := 0
for j := 1, . . . , k do {

initialize Vj to be an empty list // value list
for ℓ := 0, . . . , log(W ′) do

initialize Lj(ℓ) to be an empty list // level lists
}
// Process the stream items
foreach (stream item with value v) do {

pos := pos + 1
for j := 1, . . . , k do {

if the tail (v′, p′) of Vj has expired (i.e., p′ = pos − W)
discard (v′, p′) from Vj and from any level list Lj()

b := the largest i ≥ 0 such that the i rightmost bits in hj(v) are all 0
for ℓ := 0, . . . , b do {

if v is already in Lj(ℓ)
remove current entry for v and insert (v, pos) at the head of Lj(ℓ)

else do {
if |Lj(ℓ)| = τ then discard the pair at the tail of Lj(ℓ)
insert (v, pos) at the head of Lj(ℓ)

}
}
if v is in Vj

remove current entry for v from Vj

insert (v, pos) at the head of Vj

}
}
// Compute an estimate for a sliding window of size w ≤ W
s := max(0, pos − w + 1) // [s, pos] is the desired window
for j := 1, . . . , k do {

ℓj := min level such that the tail of Lj(ℓj) contains a position p ≤ s
cj := number of pairs in Lj(ℓj) with p ≥ s

}
return medianj=1,...,k(cj · 2

ℓj)

Fig. 11. The Randomized Wave algorithm [18]. The values of k and τ depend on the
desired ǫ and δ: k = 36 log

2
(1/δ) and τ = 36/ǫ2, where the constant 36 is determined

by the worst case analysis and can be much smaller in practice.

XXI

distinct values. Each of these “level” samples corresponds to a different sampling
probability, and retains only the τ = Θ(1/ǫ2) most recent distinct values sampled
into the associated level. (In the figure, Lj(ℓ) is the level sample for level ℓ of
instance j.) An item with value v is selected into levels 0, . . . , bj(v), and stored as
the pair (v, pos), where pos is the stream position when v most recently occurred.

Each level sample Lj(ℓ) can be maintained as a doubly linked list. The al-
gorithm also maintains a (doubly linked) list Vj of all the values in any of the
level samples Lj(), together with the position of their most recent occurrences,
ordered by position. This list enables fast discarding of items no longer within
the sliding window. Finally, there is a hash table Hj (not shown in the figure)
that holds triples (v, Vptr, Lptr), where v is a value in Vj , Vptr is a pointer to
the entry for v in Vj , and Lptr is a doubly linked list of pointers to each of the
occurrences of v in the level samples Lj(). These triples are stored in Hj hashed
by their value v.

Consider an instance j. For each stream item, we first check the oldest value
v′ in Vj to see if its position is now outside of the window, and if so, we discard it.
We use the triple in Hj(v

′) to locate all occurrences of v′ in the data structures;
these occurrences are spliced out of their respective doubly linked lists. Second,
we update the level samples Lj for each of the levels 0 . . . bj(v), where v is the
value of the stream item. There are two cases. If v is not in the level sample, we
insert it, along with its position pos, at the head of the level sample. Otherwise,
we perform a move-to-front: splicing out v’s current entry and inserting (v, pos)
at the head of the level sample. In the former case, if inserting the new element
would make the level sample exceed τ elements, we discard the oldest element
to make room. Finally, we insert (v, pos) at the head of Vj , and if v was already
in Vj , we splice out the old entry for v. Because the expected value of bj(v) is
less than 2, v occurs in an expected constant number (in this case, 2) of levels.
Thus, all of the above operations can be done in constant expected time.

Let (v′, p′) denote the pair at the tail of a level sample Lj(ℓ). Then Lj(ℓ)
contains all the distinct values with stream positions in the interval [p′, pos]
whose bj()’s are at least ℓ. Thus, similar to Coordinated Sampling, an estimate
of the number of distinct values within a window can be obtained by taking the
number of elements in Lj(ℓ) in this interval and multiplying by 2ℓ, the inverse
of the sampling probability for the level.

The error guarantee, space bound, and time bound are summarized in the
following theorem. The space bound includes the space for representing the hash
functions. The time bound assumes that computing hash functions and b are
constant expected time operations.

Theorem 12. [18] The Randomized Wave algorithm provides an (ǫ, δ)-approx-
imation scheme for estimating the number of distinct values in any sliding win-

dow of size w ≤ W , using O(log n log W log(1/δ)
ǫ2) memory bits, where the values

are in [0..n). For each item, the algorithm performs an expected O(log(1/δ))
operations on max(log n, 2 + log W)-bit memory words.

Note that by setting W to be N , the length of the stream, the algorithm
provides an (ǫ, δ)-approximation scheme for all possible window sizes.

XXII

6.3 Update Streams

Another important scenario is where the stream contains both new items and the
deletion of previous items. Examples include estimating the current number of
distinct network connections, phone connections or IP flows, where the stream
contains both the start and the end of each connection or flow. Most of the
distinct-values algorithms discussed thus far are not designed to handle deletions.
For example, algorithms that retain only the maximum of some quantity, such
as AMS, Cohen and LogLog, or even the top few highest priority items, such
as Coordinated Sampling and BJKST, are unable to properly account for the
deletion of the current maximum or a high priority item. Similarly, once a bit
i is set in the FM algorithm, the subsequent deletion of an item mapped to
bit i does not mean the bit can be unset: there are likely to have been other
un-deleted stream items that also mapped to bit i. In the case of FM, deletions
can be handled by replacing each bit with a running counter that is incremented
on insertions and decremented on deletions—at a cost of increasing the space
needed by a logarithmic factor.

Update streams generalize the insertion and deletion scenario by having each
stream item being a pair (v,∆), where ∆ > 0 specifies ∆ insertions of the value
v and ∆ < 0 specifies |∆| deletions of the value v. The resulting frequency
fv =

∑

(v,∆)∈S ∆ of value v is assumed to be nonnegative. The metric F0 is the
number of distinct values v with fv > 0. The above variant of FM with coun-
ters instead of bits readily handles update streams. Cormode et al. [9] devised
an (ǫ, δ)-approximation scheme, called l0 sketch, for distinct-values estimation
over update streams. Unlike any of the approaches discussed thus far, the l0
sketch algorithm uses properties of stable distributions, and requires floating
point arithmetic. The algorithm uses O(1

ǫ2 log(1/δ)) floating point numbers and
O(1

ǫ2 log(1/δ)) floating point operations per stream item.
Recently, Ganguly [14] devised two (ǫ, δ)-approximation schemes for up-

date streams. One uses O(1
ǫ2 (log n + log N) log N log(1/δ)) memory bits and

O(log(1/ǫ)· log(1/δ)) operations to process each stream update. The other uses
a factor of (log(1/ǫ) + log(1/δ)) times more space but reduces the number of
operations to only O(log(1/ǫ) + log(1/δ)). Both algorithms return a uniform
sampling of the distinct values, as well as an estimate.

6.4 Distributed Streams

In a number of the motivating scenarios, the goal is to estimate the number
of distinct values over a collection of distributed streams. For example, in net-
work monitoring, each router observes a stream of packets and the goal is to
estimate the number of distinct “values” (e.g., destination IP addresses, source-
destination pairs, requested urls, etc.) across all the streams. Formally, we have
t ≥ 2 data streams, S1, S2, . . . , St, of items, where each item is from a universe
of n possible values. Each stream Si is observed and processed by a party, Pi,
independently of the other streams, in one pass and with limited working space
memory. The working space can be initialized (prior to observing any stream

XXIII

data) with data shared by all parties, so that, for example, all parties can use
the same random hash function(s). The goal is to estimate the number of distinct
values in the multi-set arising from concatenating all t streams. For example, in
the t = 2 streams in Fig. 1, there are 15 distinct values in the two streams
altogether.

In response to a request to produce an estimate, each party sends a message
(containing its current synposis or some function of it) to a Referee, who outputs
the estimate based on these messages. Note that the parties do not communicate
directly with one another, and the Referee does not directly observe any stream
data. We are primarily interested in minimizing: (1) the workspace used by each
party, and (2) the time taken by a party to process a data item.

As shown in Table 2, each of the algorithms discussed in this chapter can
be readily adapted to handle the distributed streams setting. For example, the
FM algorithm (Fig. 3) can be applied to each stream independently, using the
exact same hash function across all streams, to generate a bit vector M [·] for each
stream. These bit vectors are sent to the Referee. Because the same hash function
was used by all parties, the bit-wise OR of these t bit vectors yields exactly
the bit vector that would have been produced by running the FM algorithm
on the concatenation of the t streams (or any other interleaving of the stream
data). Thus, the Referee computes this bit-wise OR, and then computes Z,
the least significant 0-bit in the result. As in the original FM algorithm, we
reduce the variance in the estimator by using k hash functions instead of just
1, where all parties use the same k hash functions. The Referee computes the
Z corresponding to each hash function, then computes the average, Z̄, of these
Z’s, and finally, outputs ⌊2Z̄/.77351⌋. The error guarantees of this distributed
streams algorithm match the error guarantees in Theorem 1 for the single-stream
algorithm. Moreover, the per-party space bound and the per-item time bound
also match the space and time bounds in Theorem 1.

Similarly, PCSA, FM with log2 space, AMS, Cohen, and LogLog can be
adapted to the distributed streams setting in a straightforward manner, pre-
serving the error guarantees, per-party space bounds, and per-item time bounds
of the single-stream algorithm.

A bit less obvious, but still relatively straightforward, is adapting algorithms
that use dynamic threshholds on what to keep and what to discard, where the
threshhold adjusts to the locally-observed data distribution. The key observation
for why these algorithms do not pose a problem is that we can match the error
guarantees of the single-stream algorithm by having the Referee use the strictest
threshhold among all the local threshholds. (Here, “strictest” means that the
smallest fraction of the data universe has its items kept.) Namely, if ℓ is the
strictest threshhold, the Referee “subsamples” the synopses from all the parties
by applying the threshhold ℓ to the synopses. This unifies all the synopses to the
same threshhold, and hence the Referee can safely combine these synopses and
compute an estimate.

Consider, for example, the Coordinated Sampling algorithm (Fig. 9). Each
party sends its sets S1, . . . , Sk and levels ℓ1, . . . , ℓk to the Referee. For j =

XXIV

1, . . . , k, the Referee computes ℓ∗j , the maximum value of the ℓj ’s from all the
parties. Then, for each j, the Referee subsamples each of the Sj from the t
parties, by discarding from Sj all pairs (v′, b′) such that b′ < ℓ∗j . Next, for each
j, the Referee determines the union, S∗

j , of all the subsampled Sj ’s. Finally, the

Referee outputs the median over all j of |S∗

j |·2l∗j . The error guarantees, per-party
space bound, and per-item time bound match those in Theorem 5 for the single-
stream algorithm [17]. The error guarantees follow because (1) S∗

j contains all
pairs (v, b) with b ≥ ℓ∗j across all t streams, and (2) the size of each S∗

j is at least
as big as the size of the Sj at a party with level ℓj = ℓ∗j (i.e., at a party with no
subsampling), and this latter size was already sufficient to get a good estimate
in the single-stream setting.

6.5 Order- and Duplicate-Insensitive (ODI)

Another interesting setting for distinct-values estimation algorithms arises in
robust aggregation in wireless sensor networks. In sensor network aggregation,
an aggregate function (e.g., count, sum, average) of the sensors’ readings is
often computed by having the wireless sensor nodes organize themselves into
a tree (with the base station as the root). The aggregate is computed bottom-up
starting at the leaves of the tree: each internal node in the tree combines its
own reading with the partial results from its children, and sends the result to
its parent. For a sum, for example, the node’s reading is added to the sum of
its childrens’ respective partial sums. This conserves energy because each sensor
node sends only one short message, in contrast to the naive approach of having
all readings forwarded hop-by-hop to the base station.

Aggregating along a tree, however, is not robust against message loss, which
is common in sensor networks, because each dropped message loses a subtree’s
worth of readings. Thus, Considine et al. [8] and Nath et al. [24] proposed us-
ing multi-path routing for more robust aggregation. In one scheme, the nodes
organize themselves into “rings” around the base station, where ring i consists
of all nodes that are i hops from the base station. As in the tree, aggregation
is done bottom-up starting with the nodes in the ring furthest from the base
station (the “leaf” nodes). In contrast to the tree, however, when a node sends
its partial result, there is no designated parent. Instead, all nodes in the next
closest ring that overhear the partial result incorporate it into their accumulat-
ing partial results. Because of the added redundancy, the aggregation is highly
robust to message loss, yet the energy consumption is similar to the (non-robust)
tree because each sensor node sends only one short message.

On the other hand, because of the redundancy, partial results are accounted
for multiple times. Thus, the aggregation must be done in a duplicate-insensitive
fashion. This is where distinct-values estimation algorithms come in. First, if the
goal is to count the number of distinct “values” (e.g., the number of distinct
temperature readings), then a distinct-values estimation algorithm can be used,
as long as the algorithm works for distributed streams and is insensitive to the
duplication and observation re-ordering that arises in the scheme. An aggregation

XXV

algorithm with the combined properties of order- and duplicate-insensitivity is
called ODI-correct [24]. Second, if the goal is to count the number of sensor nodes
whose readings satisfy a given boolean predicate (e.g., nodes with temperature
readings below freezing), then again a distinct-values estimation algorithm can
be used, as follows. Each sensor node whose reading satisfies the predicate uses
its unique sensor id as its “value”. Then the number of distinct values in the
sensor network is precisely the desired count. Thus any distributed, ODI-correct
distinct-values estimation algorithm can be used.

As shown in Table 2, most of the algorithms discussed in this chapter are ODI-
correct. For example, the FM algorithm (Fig. 3) is insensitive to both re-ordering
and duplication: the bits that are set in an FM bit vector are independent of both
the order in which stream items are processed and any duplication of “partial-
result” bit vectors (i.e., bit vectors corresponding to a subset of the stream
items). Moreover, Considine et al. [8] showed how the FM algorithm can be
effectively adapted to use only O(log log n) bit messages in this setting. Similarly,
most of the other algorithms are ODI-correct, as can be proved formally using
the approach described in [24].

6.6 Additional Settings

We conclude this chapter by briefly mentioning three additional important set-
tings considered in the literature.

The first setting is distinct-values estimation when each value is unique. This
setting occurs, for example, in distributed census taking over mobile objects
(e.g., [31]). Here, there are a large number of objects, each with a unique id. The
goal is to estimate how many objects there are despite the constant motion of
the objects, while minimizing the communication. Clearly, any of the distributed
distinct-values estimation algorithms discussed in this chapter can be used. Note,
however, that the setting enables a practical optimization: hash functions are not
needed to map values to bit positions or levels. Instead, independent coin tosses
can be used at each object; the desired exponential distribution can be obtained
by flipping a fair coin until the first heads and counting the number of tails
observed prior to the first head. (The unique id is not even used.) Obviating
the need for hash functions eliminates their space and time overhead. Thus, for
example, only O(log log n)-bit synopses are needed for the AMS algorithm. Note
that hash functions were needed before to ensure that the multiple occurrences
of the same value all map to the same bit position or level; this feature is not
needed in the setting with unique values.

A second setting, studied by Bar-Yossef et al. [3] and Pavan and Tirtha-
pura [28], seeks to estimate the number of distinct values where each stream item
is a range of integers. For example, in the 4-item stream [2, 5], [10, 12], [4, 8], [6, 7],
there are 10 distinct values, namely, 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12. Pavan

and Tirthapura present an (ǫ, δ)-approximation scheme that uses O(log n log(1/δ)
ǫ2)

memory bits, and performs an amortized O(log(1/δ) log(n/ǫ)) operations per
stream item. Note that although a single stream item introduces up to n dis-

XXVI

tinct values into the stream, the space and time bounds have only a logarithmic
(and not a linear) dependence on n.

Finally, a third important setting generalizes the distributed streams set-
ting from just the union (concatenation) of the data streams to arbitrary set-
expressions among the streams (including intersections and set differences). In
this setting the number of distinct values corresponds to the cardinality of the
resulting set. Ganguly et al. [15] showed how techniques for distinct values esti-
mation can be generalized to handle this much richer setting.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. of Computer and System Sciences 58 (1999) 137–147

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Count-
ing distinct elements in a data stream. In: Proc. 6th International Workshop on
Randomization and Approximation Techniques. (2002) 1–10

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proc. 13th ACM-SIAM
Symposium on Discrete Algorithms (SODA). (2002)

4. Bunge, J., Fitzpatrick, M.: Estimating the number of species: A review. J. of the
American Statistical Association 88 (1993) 364–373

5. Charikar, M., Chaudhuri, S., Motwani, R., Narasayya, V.: Towards estimation
error guarantees for distinct values. In: Proc. 19th ACM Symp. on Principles of
Database Systems. (2000) 268–279

6. Chaudhuri, S., Motwani, R., Narasayya, V.: Random sampling for histogram con-
struction: How much is enough? In: Proc. ACM SIGMOD International Conf. on
Management of Data. (1998) 436–447

7. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. of Computer and System Sciences 55 (1997) 441–453

8. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques for
sensor databases. In: Proc. 20th International Conf. on Data Engineering. (2004)
449–460

9. Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams
using Hamming norms (how to zero in). In: Proc. 28th International Conf. on Very
Large Data Bases. (2002) 335–345

10. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM Journal on Computing 31 (2002) 1794–1813

11. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: Proc. 11th
European Symp. on Algorithms. (2003) 605–617

12. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting active flows on
high speed links. In: Proc. 3rd ACM SIGCOMM Conf. on Internet Measurement.
(2003) 153–166

13. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. of Computer and System Sciences 31 (1985) 182–209

14. Ganguly, S.: Counting distinct items over update streams. In: Proc. 16th Interna-
tional Symp. on Algorithms and Computation. (2005) 505–514

15. Ganguly, S., Garofalakis, M., Rastogi, R.: Tracking set-expression cardinalities
over continuous update streams. VLDB J. 13 (2004) 354–369

XXVII

16. Gibbons, P.B.: Distinct sampling for highly-accurate answers to distinct values
queries and event reports. In: Proc. 27th International Conf. on Very Large Data
Bases. (2001) 541–550

17. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures.
(2001) 281–291

18. Gibbons, P.B., Tirthapura, S.: Distributed streams algorithms for sliding windows.
In: Proc. 14th ACM Symp. on Parallel Algorithms and Architectures. (2002) 63–72

19. Haas, P.J., Naughton, J.F., Seshadri, S., Stokes, L.: Sampling-based estimation of
the number of distinct values of an attribute. In: Proc. 21st International Conf. on
Very Large Data Bases. (1995) 311–322

20. Haas, P.J., Stokes, L.: Estimating the number of classes in a finite population.
J. of the American Statistical Association 93 (1998) 1475–1487

21. Hou, W.C., Özsoyoǧlu, G., Taneja, B.K.: Statistical estimators for relational al-
gebra expressions. In: Proc. 7th ACM Symp. on Principles of Database Systems.
(1988) 276–287

22. Hou, W.C., Özsoyoǧlu, G., Taneja, B.K.: Processing aggregate relational queries
with hard time constraints. In: Proc. ACM SIGMOD International Conf. on Man-
agement of Data. (1989) 68–77

23. Kumar, A., Xu, J., Wang, J., Spatscheck, O., Li, L.: Space-code bloom filter for
efficient per-flow traffic measurement. In: Proc. IEEE INFOCOM. (2004)

24. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.: Synopsis diffusion for robust ag-
gregation in sensor networks. In: Proc. 2nd ACM International Conf. on Embedded
Networked Sensor Systems. (2004) 250–262

25. Naughton, J.F., Seshadri, S.: On estimating the size of projections. In: Proc. 3rd
International Conf. on Database Theory. (1990) 499–513

26. Olken, F.: Random Sampling from Databases. PhD thesis, Computer Science,
U.C. Berkeley (1993)

27. Palmer, C.R., Gibbons, P.B., Faloutsos, C.: ANF: A fast and scalable tool for data
mining in massive graphs. In: Proc. 8th ACM SIGKDD International Conf. on
Knowledge Discovery and Data Mining. (2002) 81–90

28. Pavan, A., Tirthapura, S.: Range-efficient computation of F0 over massive data
streams. In: Proc. 21st IEEE International Conf. on Data Engineering. (2005)
32–43

29. Poosala, V.: Histogram-based Estimation Techniques in Databases. PhD thesis,
Univ. of Wisconsin-Madison (1997)

30. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for
selectivity estimation of range predicates. In: Proc. ACM SIGMOD International
Conf. on Management of Data. (1996) 294–305

31. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal agge-
gration using sketches. In: Proc. 20th International Conf. on Data Engineering.
(2004) 214–225

32. Venkataraman, S., Song, D., Gibbons, P.B., Blum, A.: New streaming algorithms
for high speed network monitoring and internet attacks detection. In: Proc. 12th
ISOC Network and Distributed Security Symp. (2005)

33. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic
counting algorithm for database applications. ACM Transactions on Database
Systems 15 (1990) 208–229

34. Woodruff, D.: Optimal space lower bounds for all frequency moments. In:
Proc. 15th ACM-SIAM Symp. on Discrete Algorithms. (2004) 167–175

